Validación de un modelo cognitivo basado en M ++ para la generación de preguntas Factoid-Wh

  • Ana Luz Espinosa López Universidad de Córdoba
  • Yina Margarita Vega Calao Universidad de Córdoba
  • Adán Alberto Gómez Salgado Universidad de Córdoba
  • Manuel Fernando Caro Piñeres Universidad de Córdoba
Palabras clave: Modelo Cognitivo; Preguntas Factoid-WH; Lenguaje Visual de Dominio Específico: M .


Una pregunta Factoid-WH es una pregunta que comienza con una palabra interrogada WH (What, When, Where, Who) y requiere un hecho como expresado en el cuerpo del texto. Un modelo cognitivo es una especificación teóricamente fundamentada y guiada de las representaciones mentales y los procesos involucrados en una función cognitiva dada. Este artículo tiene como objetivo la representación en M++ del Modelo Cognitivo para la generación de preguntas Factoid-WH. La metodología de este trabajo se presenta en cinco pasos: Selección de la Tarea Cognitiva, Obtención de Información para Describir la Tarea Cognitiva, Descripción de la Tarea Cognitiva en Lenguaje Natural, Descripción de la Tarea Cognitiva en GOMS, Codificación del Modelo Cognitivo de GOMS a Lenguaje M++ y finalmente, se implementó una prueba de validación la cual muestra resultados satisfactorios.


La descarga de datos todavía no está disponible.

Biografía del autor/a

Yina Margarita Vega Calao, Universidad de Córdoba

Docente, Lenguas Extranjeras, Informática y Computación Cognitiva, Montería, Colombia.

Adán Alberto Gómez Salgado, Universidad de Córdoba

Docente, Informática Educativa, Informática Cognitiva y Computación Cognitiva, Montería, Colombia.

Manuel Fernando Caro Piñeres, Universidad de Córdoba

Docente, Informática Educativa, Informática Cognitiva y Computación Cognitiva, Montería, Colombia.


Abrahão, S., Insfran, E., Cars’, J. A., & Genero, M. (2011). Evaluating requirements modeling methods based on user perceptions: A family of experiments. Information Sciences, 181(16), 3356–3378.

Ali Addaibani, A. (2017). Acquisition of WH-Question in english by Saudi English Majors in Najran University. British Journal of English Linguistics, 5(4), (pp. 17–28). Retrieved from

Boyer, K. E., & Piwek, P. (2010). Proceedings of QG2010: The Third Workshop on Question Generation.

Caro, M. F., Gómez, A. A., & Giraldo, J. C. (2017). Algorithmic knowledge profiles for introspective monitoring in artificial cognitive agents. Cognitive Informatics & Cognitive Computing (ICCI* CC), 2017 IEEE 16th International Conference on (pp. 475–481).

Caro, M. F., Josvula, D. P., Gómez, A. A., & Kennedy, C. M. (2018). Introduction to the CARINA metacognitive architecture. In 2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC) (pp. 530–540).

Caro, M. F., Josyula, D. P., Cox, M. T., & Jiménez, J. A. (2014). Design and validation of a metamodel for metacognition support in artificial intelligent systems. Biologically Inspired Cognitive Architectures, 9, 82–104.

Caro, M. F., Josyula, D. P., Jiménez, J. A., Kennedy, C. M., & Cox, M. T. (2015). A domain-specific visual language for modeling metacognition in intelligent systems. Biologically Inspired Cognitive Architectures, 13, 75–90.

Forstmann, B. U., & Wagenmakers, E.-J. (2015). Model-based cognitive neuroscience: A conceptual introduction. In An introduction to model-based cognitive neuroscience (pp. 139–156). Springer.

Fum, D., Del Missier, F., & Stocco, A. (2007). The cognitive modeling of human behavior: Why a model is (sometimes) better than 10,000 words. Elsevier.

Garcia, G. E., & Pearson, P. D. (1990). Modifying reading instruction to maximize its effectiveness for all students. Center for the Study of Reading Technical Report; No. 489.

Garvey, C. (1975). Requests and responses in children’s speech. Journal of Child Language, 2(1), 41–63.

Georgeff, M. (1988). A theory of action for multiagent planning. In Readings in Distributed Artificial Intelligence (pp. 205–209). Elsevier.

Gómez, A. A., & Caro, M. F. (2018). Meta-Modeling Process of Pedagogical Strategies in Intelligent Tutoring Systems. In 2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC) (pp. 485–494).

Gómez, A. A., Caro, M. F., Solano, A. M., & Vega, Y. M. (2018). Trends of Educational Informatics in Latin America. International Journal of Software Science and Computational Intelligence (IJSSCI), 10(1), (pp. 80–87).

Hart, B., & Risley, T. R. (1999). The Social World of Children: Learning To Talk. ERIC.

Heilman, M., & Smith, N. A. (2010). Extracting simplified statements for factual question generation. In Proceedings of QG2010: The Third Workshop on Ques-tion Generation (Vol. 11).

Holzman, M. (1972). The use of interrogative forms in the verbal interaction of three mothers and their children. Journal of Psycholinguistic Research, 1(4), (pp. 311–336).

Hung, G., Stark, L., & Eykhoff, P. (1977). On the interpretation of kernels. Annals of Biomedical Engineering, 5(2), (pp.130–143).

i Cherta, M. R. T. (1993). Un estudio transversal de nivel de adquisición de la interrogación en inglés con alumnos de 8ode EGB. Revista Española de Lingü{’i}stica Aplicada, (9), (pp.169–187).

Isern, D., Gómez-Alonso, C., & Moreno, A. (2008). Methodological development of a multi-agent system in the healthcare domain. Communications of SIWN, 3, (pp.65–68).

Jacko, J. A. (2012). Human computer interaction handbook: Fundamentals, evolving technologies, and emerging applications. CRC press.

Jerónimo, A. J., Caro, M. F., & Gómez, A. A. (2018). Formal Specification of cognitive models in CARINA. In 2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC) (pp. 614–619).

Kalady, S., Elikkottil, A., & Das, R. (2010). Natural language question generation using syntax and keywords. In Proceedings of QG2010: The Third Workshop on Question Generation (pp. 1–10).

Kieras, D. E. (1999). A Guide to GOMS Model Usability Evaluation Using GOMSL and GLEAN3,No. 38. Ann Arbor, Michigan: University of Michigan.

Kolomiyets, O., & Moens, M.-F. (2011). A survey on question answering technology from an information retrieval perspective. Information Sciences, 181(24), (pp.5412–5434).

Kopp, S., & Bergmann, K. (2017). Using cognitive models to understand multimodal processes: the case for speech and gesture production. In The Handbook of Multimodal-Multisensor Interfaces (pp. 239–276).

Langley, P., Laird, J. E., & Rogers, S. (2009). Cognitive architectures: Research issues and challenges. Cognitive Systems Research, 10(2), (pp.141–160).

Marewski, J. N., & Link, D. (2014). Strategy selection: An introduction to the modeling challenge. Wiley Interdisciplinary Reviews: Cognitive Science, 5(1), (pp.39–59).

Molina, A. I., Gallardo, J., Redondo, M. A., Ortega, M., & Giraldo, W. J. (2013). Metamodel-driven definition of a visual modeling language for specifying interactive groupware applications: An empirical study. Journal of Systems and Software, 86(7), (pp.1772–1789).

Olier, A. J., Gómez, A. A., & Caro, M. F. (2018). Cognitive Modeling Process in Metacognitive Architecture CARINA. In 2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC) (pp. 579–585).

Palinscar, A. S., & Brown, A. L. (1984). Reciprocal teaching of comprehension-fostering and comprehension-monitoring activities. Cognition and Instruction, 1(2), (pp.117–175).

Perlis, D., Cox, M. T., Maynord, M., & others. (2013). A broad vision for intelligent behavior: Perpetual real-world cognitive agents. In 2013 Annual Conference on Advances in Cognitive Systems: Workshop on Metacognition in Situated Agents .

Piccinini, G. (2010). The mind as neural software? Understanding functionalism, computationalism, and computational functionalism. Philosophy and Phenomenological Research, 81(2), (pp.269–311).

Ramos, C., Augusto, J. C., & Shapiro, D. (2008). Ambient intelligence the next step for artificial intelligence. IEEE Intelligent Systems, 23(2), (pp.15–18).

Rus, V., & Arthur, C. G. (2009). The question generation shared task and evaluation challenge. In The University of Memphis. National Science Foundation.

Rus, V., Wyse, B., Piwek, P., Lintean, M., Stoyanchev, S., & Moldovan, C. (2012). A detailed account of the first question generation shared task evaluation challenge. Dialogue & Discourse, 3(2), (pp.177–204).

Sargent, R. G. (1998). Verification And Validation Of Simulation Models. Electrical Engineering and Computer Science, 7. Retrieved from

Scardamalia, M., & Bereiter, C. (1985). Fostering the development of self-regulation in children’s knowledge processing. Thinking and Learning Skills, 2, (pp.563–577).

Shah, P., & Miyake, A. (1999). Models of working memory. Models of Working Memory: Mechanisms of Active Maintenance and Executive Control, 1–27.

Siller, M., & Sigman, M. (2002). The behaviors of parents of children with autism predict the subsequent development of their children’s communication. Journal of Autism and Developmental Disorders, 32(2), (pp.77–89).

Sjøberg, D. I. K., Hannay, J. E., Hansen, O., Kampenes, V. B., Karahasanovic, A., Liborg, N.-K., & Rekdal, A. C. (2005). A survey of controlled experiments in software engineering. IEEE Transactions on Software Engineering, 31(9), (pp.733–753).

Strube, G. (2001). Cognitive modeling: research logic in cognitive science.

Taylor, B. A., & Harris, S. L. (1995). Teaching children with autism to seek information-acquisition of novel information and generalization of responding. Journal of Applied Behavior Analysis, 28(1), 3–14.

Valin, R. D. Van. (1998). The Acquisition of WH-Questions and the Mechanisms of Language Acquisition. N.J.: LEA, (pp.221–249). Retrieved from

Van Der Lely, H. K. J., & Battell, J. (2003). Wh-movement in children with grammatical SLI: A test of the RDDR hypothesis. Language, 79(1), (pp.153–181).

van der Meulen, I., Bastiaanse, R., & Rooryck, J. (2011). Wh-questions in agrammatism: a movement deficit? Stem-, Spraak-En Taalpathologie, 13(1).

Waraporn, N., & Ahamed, S. V. (2006). Intelligent medical search engine by knowledge machine. In Information Technology: New Generations, 2006. ITNG 2006. Third International Conference on (pp. 601–605).

Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., Regnel, B., & Wesslen, A. (1999). Experimentation in Software Engineering: An Introduction.

Ziefle, M., Röcker, C., Wilkowska, W., Kasugai, K., Klack, L., Möllering, C., & Beul, S. (2011). A multi-disciplinary approach to ambient assisted living. In E-Health, Assistive technologies and applications for assisted living: Challenges and solutions (pp. 76–93). IGI Global.

Cómo citar
Espinosa López, A., Vega Calao, Y., Gómez Salgado, A., & Caro Piñeres, M. (2018). Validación de un modelo cognitivo basado en M ++ para la generación de preguntas Factoid-Wh. Teknos Revista Científica, 18(2), 11 - 20.