Sistema de recomendación de objetos de aprendizaje a través de filtrado colaborativo

  • Paula Andrea Rodríguez Marín Universidad Nacional de Colombia
  • Ángela María Pérez Zapata Universidad Nacional de Colombia
  • Luis Felipe Londoño Rojas Universidad Nacional de Colombia
  • Néstor Darío Duque Mendez Universidad Nacional de Colombia
Palabras clave: métricas de similitud, objetos de aprendizaje, perfiles de usuario, sistemas de recomendación, filtrado colaborativo.

Resumen

El uso de plataformas colaborativas en educación se ha incrementado en los últimos años. La gran cantidad de usuarios registrados en las mismas ha originado el problema de no saber con quién interactuar. Muchas veces la persona con quien se interactúa no es la idónea y resultan interacciones no exitosas. En este artículo, se presenta un sistema recomendado que sugiere personas idóneas para interactuar en una plataformacolaborativa.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Paula Andrea Rodríguez Marín, Universidad Nacional de Colombia
Candidata a Doctor, Departamento de Ciencias de la computación y de la decisión Facultad de Minas, Grupo de ambientes inteligentes adaptativos - GAIA, Universidad Nacional de Colombia Sede Medellín, Calle 80 No. 65-223 Campus Robledo, Medellín, Colombia.
Ángela María Pérez Zapata, Universidad Nacional de Colombia
Estudiante de Administración de Sistemas Informáticos, Departamento de Informática y Computación, Grupo de ambientes inteligentes adaptativos - GAIA, Universidad Nacional de Colombia Sede Manizales, Kilómetro 7 vía al Magdalena La Nubia, Manizales, Colombia.
Luis Felipe Londoño Rojas, Universidad Nacional de Colombia
Estudiante de Administración de Sistemas Informáticos, Departamento de Informática y Computación, Grupo de ambientes inteligentes adaptativos - GAIA, Universidad Nacional de Colombia Sede Manizales, Kilómetro 7 vía al Magdalena La Nubia, Manizales, Colombia.
Néstor Darío Duque Mendez, Universidad Nacional de Colombia
Profesor asociado, Departamento de Informática y Computación, Grupo de ambientes inteligentes adaptativos - GAIA, Universidad Nacional de Colombia Sede Manizales, Kilómetro 7 vía al Magdalena La Nubia, Manizales, Colombia.

Referencias

Alonso, C., Gallego, D. and Honey, P. (1997). Los Estilos de Aprendizaje. Procedimientos de diagnóstico y mejora. Bilbao: Mensajero.

Betancur, D., Moreno, J. and Ovalle, D. (2009). Modelo para la recomendación y recuperación de objetos de aprendizaje en entornos virtuales de enseñanza/aprendizaje. Av. en Sist. e Informática, 6(1), 45–56.

Bobadilla, J., Ortega, F., Hernando, A. & Alcalá, J. (2011). Improving collaborative filtering recommender system results and performance using

genetic algorithms. Knowledge-Based Syst., 24(8), pp. 1310–1316.

Bobadilla, J., Ortega, F., Hernando, A & Gutiérrez, A. (2013). Recommender systems survey. Knowledge-Based Syst., 46, 109–132.

Bobadilla, J., Serradilla, F. and Hernando, A. (2009). Collaborative filtering adapted to recommender systems of e-learning. Knowledge-Based Syst., 22(4), 261–265.

Burke, R. (2002). Hybrid Recommender Systems: Survey and Experiments. User Model. User-adapt. Interact., 12(4), pp. 331–370.

Casali, A., Gerling, V., Deco, C. & Bender, C. (2011). Sistema inteligente para la recomendación de objetos de aprendizaje. Generación Digit. 9(1), 88–95.

Chesani, F. (2002). Recommendation Systems. Corso di laurea Ing. Inform., (1–32).

Del Pino, J., Salazar, G. and Cedeño, V. (2011). Adaptación de un Recomendador de Filtro Colaborativo Basado en el Usuario para la Creación de un Recomendador de Materias de Pregrado Basado en el Historial Académico de los Estudiantes. Rev. Tecnológica ESPOL – RTE, 24(2), 29–34.

Duque, N. D., Ovalle, D. A. & Moreno, J. (2015) Objetos De Aprendizaje, Repositorios Y Federaciones... Conocimiento Para Todos.

Hernando, A., Bobadilla, J. and Ortega, F. (2016). A non-negative matrix factorization for Collaborative Filtering Recommender Systems based on a Bayesian probabilistic model. Knowledge-Based Syst., 97, 188–202.

Hdioud, F., Frikh, B. and Ouhbi, B. (2012). A comparison study of some algorithms in Recommender Systems. Inf. Sci. Technol., Colloquium, (130–135).

Kim, M. and Choi, K. (1999). A comparison of collocation-based similarity measures in query expansion. Inf. Process. Manag., 35(1), 19–30.

Ortega, F., Hernando, A., Bobadilla, J. & Kang, J. H. (2016). Recommending items to group of users using Matrix Factorization based Collaborative Filtering. Inf. Sci. (Ny), 345, 313–324.

Rodríguez, P. A., Moreno, J., Duque, N. D., Ovalle, D. & Silveira, R. (2014). Un modelo para la composición semiautomática de contenido educativo desde repositorios abiertos de objetos de aprendizaje. A model for the semi-automatic composition of educational content from open repositories of learning objects. Electrónica Investig. Educ. (REDIE), 16(1).

Sicilia, M. Á., García-Barriocanala, E., Sánchez-Alonso, S. and Cechinelb, C. (2010). Exploring user-based recommender results in large learning object repositories: the case of MERLOT. Procedia Comput. Sci., 1(2), 2,859–2,864.

Publicado
2016-12-30
Cómo citar
Rodríguez Marín, P. A., Pérez Zapata, Ángela M., Londoño Rojas, L. F., & Duque Mendez, N. D. (2016). Sistema de recomendación de objetos de aprendizaje a través de filtrado colaborativo. Teknos Revista Científica, 16(2), 85-94. https://doi.org/10.25044/25392190.824
Sección
Artículos